Calculated Mean
Global Temperatures 16102012
Introduction
This monograph is a clarification and further refinement of
Reference 10 (references are listed at the end of this paper) which also considers only average global temperature. It does not
discuss weather, which is a complex study of energy moving about the planet. It
does not even address local climate, which includes precipitation. It does,
however, consider the issue of Global Warming and the mistaken perception that
human activity has a significant influence on it.
The word ‘trend’ is used here for temperatures in two
different contexts. To differentiate, αtrend applies to averagingout the
uncertainties in reported average global temperature measurements to produce
the average global temperature oscillation resulting from the net ocean surface
oscillation. The term βtrend applies to the slower average temperature change of the
planet which is associated with change to the temperature of the bulk volume of
the material (mostly water) involved.
The first paper to suggest the hypothesis that the sunspot
number timeintegral is a proxy for a substantial driver of average global
temperature change was made public 6/1/2009. The discovery started with
application of the first law of thermodynamics, conservation of energy, and the
hypothesis that the energy acquired, above or below breakeven (appropriately accounting
for energy radiated from the planet), is proportional to the timeintegral of
sunspot numbers. The derived equation revealed a rapid and sustained global energy
rise starting in about 1941. The true average global temperature anomaly change
βtrend is proportional to global energy change.
Measured temperature anomaly αtrends oscillate above and
below the temperature anomaly βtrend calculated using only the sunspot number
timeintegral. The existence of ocean oscillations, especially the Pacific
Decadal Oscillation, led to the perception that there must be an effective net surface
temperature oscillation with all named and unnamed ocean oscillations as
participants. Plots of measured average global temperatures indicate that the
net surface temperature oscillation has a period of 64 years with the
most recent maximum in 2005.
Combination of the effects results in the effect of the ocean
surface temperature oscillation (αtrend) decline 19411973 being slightly
stronger than the effect of the rapid rise from sunspots (βtrend) resulting in
a slight decline of the trend of reported average global temperatures. The steep
rise 19732005 occurred because the effects added. A high coefficient of
determination, R^{2}, demonstrates that the hypothesis is true.
Over the years, several refinements to this work (often resulting from other's comments which may or may not have been agreeable) slightly improved the
accuracy and led to the equations and figures in this paper.
Prior work
The law of conservation of energy is applied effectively the same as described in
Reference 2 in the development of a very similar equation that calculates
temperature anomalies. The difference is that the variation in energy ‘OUT’ has
been found to be adequately accounted for by variation of the sunspot numbers.
Thus the influence of the factor [T(i)/Tavg]^{4} is eliminated.
Change to the level of atmospheric carbon dioxide has no
significant effect on average global temperature. This was demonstrated in 2008
at Reference 6 and is corroborated at Reference 2
and again here.
As determined in Reference 3, reported average global
temperature anomaly measurements have a random uncertainty with equivalent
standard deviation ≈ 0.09 K.
Global Warming ended more than a decade ago as shown here,
and in Reference 4 and also Reference 2.
Average global temperature is very sensitive to cloud change
as shown in Reference 5.
The parameter for average sunspot number was 43.97 (average
18501940) in Ref. 1, 42 (average 18951940) in Ref. 9, and 40 (average
16102012) in Ref. 10. It is set at 34 (average 16101940) in this paper. The
procession of values for average sunspot number produces slight but steady
improvement in R^{2} for the period of measured temperatures and
progressively greater credibility of average global temperature estimates for
the period prior to direct measurements becoming available.
Initial work is presented in several papers at http://climaterealists.com/index.php?tid=145&linkbox=true
The sunspot number
timeintegral drives the temperature anomaly trend
It is axiomatic that change to the average temperature trend
of the planet is due to change to the net energy retained by the planet.
Table 1 in reference 2 shows the influence of atmospheric
carbon dioxide (CO_{2}) to be insignificant (tiny change in R^{2}
if considering CO_{2} or not) so it can be removed from the equation by
setting coefficient ‘C’ to zero. With ‘C’ set to zero, Equation 1 in Reference
2 calculates average global temperature anomalies (AGT) since 1895 with 89.82%
accuracy (R^{2} = 0.898220).
The current analysis determined that 34, the approximate
average of sunspot numbers from 16101940, provides a slightly better fit to
the measured temperature data than did 43.97 and other values^{ 9,10}.
The influence, of StephanBoltzmann radiation change due to AGT change, on energy change is adequately accounted for by the
sunspot number timeintegral. With these refinements to Equation (1) in Reference
2 the coefficients become A = 0.3588, B = 0.003461 and D = ‑ 0.4485. R^{2} increases slightly to 0.904906
and the calculated anomaly in 2005 is 0.5045 K. Also with these refinements the
equation calculates lower early anomalies and projects slightly higher (0.3175
vs. 0.269 in 2020) future anomalies. Measured anomalies are shown in Figure 2 of Reference 3. The excellent match of the up and down trends
since before 1900 of calculated and measured anomalies, shown here in Figure 1,
demonstrates the usefulness and validity of the calculations.
Projections until 2020 use the expected sunspot number trend for
the remainder of solar cycle 24 as provided^{ 11} by NASA. After 2020
the limiting cases are either assuming sunspots like from 1925 to 1941 or for
the case of no sunspots which is similar to the Maunder Minimum.
Some noteworthy volcanoes and the year they occurred are also shown
on Figure 1. No consistent AGT response is observed to be associated with
these. Any global temperature perturbation that might have been caused by
volcanoes of this size is lost in the temperature measurement uncertainty. Much
larger volcanoes can cause significant temporary global cooling from the added
reflectivity of aerosols and airborne particulates. The Tambora eruption, which
started on April 10, 1815 and continued to erupt for at least 6 months, was
approximately ten times the magnitude of the next largest in recorded history
and led to 1816 which has been referred to as ‘the year without a summer’. The
cooling effect of that volcano exacerbated the already cool temperatures
associated with the Dalton Minimum.
As discussed in Reference 2, ocean oscillations produce
oscillations of the ocean surface temperature with no significant change to the
average temperature of the bulk volume of water involved. The effect on AGT of
the full range of surface temperature oscillation is given by the coefficient
‘A’.
The influence of ocean surface temperature oscillations can
be removed from the equation by setting ‘A’ to zero. To use all regularly
recorded sunspot numbers, the integration starts in 1610. The offset, ‘D’ must
be changed to 0.1993 to account for the different integration start point and
setting ‘A’ to zero. Setting ‘A’ to zero requires that the anomaly in 2005 be
0.5045  0.3588/2 = 0.3251 K. The result, Equation (1) here, then calculates
the trend 16102012 resulting from just the sunspot number timeintegral.
Trend3anom(y) = 0.003461/17 * Σ^{y}_{i = 1610}
[s(i)34] – 0.1993 (1)
Where:
Trend3anom(y) = calculated temperature anomaly βtrend in
year y, K degrees.
0.003461 = the proxy factor, B, W yr m^{2}.
17 = effective thermal capacitance of the planet, W Yr m^{2}
K^{1}
s(i) = average daily Brussels International sunspot number
in year i
34 ≈ average
sunspot number for 16101940.
0.1993 is
merely an offset that shifts the calculated trajectory vertically on the graph,
without changing its shape, so that the calculated temperature anomaly in 2005
is 0.3251 K which is the calculated anomaly for 2005 if the ocean oscillation
is not included.
Sunspot numbers back to 1610 are shown in Figure 2 of Reference
1.
Applying Equation (1) to the sunspot numbers of Figure 2 of Reference
1 produces the trace shown in Figure 2 below.
Figure 2: Anomaly
trend from just the sunspot number timeintegral using Equation (1).
Average global temperatures were not directly measured in
1610 (thermometers had not been invented yet). Recent estimates, using proxies,
are few. The anomaly trend that Equation (1) calculates for that time is roughly
consistent with other estimates. The decline in the trace 16101700 on Figure 2
results from the low sunspot numbers for that period as shown on Figure 2 of
Reference 1.
How this phenomenon
could take place
Although the
connection between AGT and the sunspot number timeintegral is demonstrated,
the mechanism by which this takes place remains somewhat theoretical.
Various papers have been written
that indicate how the solar magnetic field associated with sunspots can influence
climate on earth. These papers posit that decreased sunspots are associated
with decreased solar magnetic field which decreases the deflection of and
therefore increases the flow of galactic cosmic rays on earth.
Henrik Svensmark, a Danish physicist, found that decreased
galactic cosmic rays caused decreased low level (<3 km) clouds and planet
warming. An abstract of his 2000 paper is at Reference 13. Marsden and
Lingenfelter also report this in the summary of their 2003 paper^{ 14} where they make the statement “…solar activity increases…providing more
shielding…less lowlevel cloud cover… increase surface air
temperature.” These findings have been
further corroborated by the cloud nucleation experiments^{ 15} at CERN.
These papers associated the increased lowlevel clouds with increased
albedo leading to lower temperatures. Increased low clouds would also result in
lower average cloud altitude and therefore higher average cloud temperature.
Although clouds are commonly acknowledged to increase albedo, they also radiate
energy to space so increasing their temperature increases radiation to space
which would cause the planet to cool. Increased albedo reduces the energy
received by the planet and increased radiation to space reduces the energy of
the planet. Thus the two effects work together to change the AGT of the planet.
Simple analyses^{ 5} indicate that either an increase of
approximately 186 meters in average cloud altitude or a decrease of average
albedo from 0.3 to the very slightly reduced value of 0.2928 would account for
all of the 20^{th} century increase in AGT of 0.74 °C. Because the
cloud effects work together and part of the temperature change is due to ocean
oscillation substantially less cloud change is needed.
Combined Sunspot
Effect and Ocean Oscillation Effect
As a possibility, the period and amplitude of oscillations
attributed to ocean cycles demonstrated to be valid after 1895 are assumed to
maintain back to 1610. Equation (1) is modified as shown in Equation (2) to
account for including the effects of ocean oscillations. Since the expression
for the oscillations calculates values from zero to the full range but
oscillations must be centered on zero, it must be reduced by half the
oscillation range.
Trend4anom(y) = (0.3588,y) – 0.1794 + 0.003461/17 * Σ^{y}_{i
= 1610} [s(i)34] – 0.1993 (2)
The ocean oscillation factor, (0.3588,y) – 0.1794, is
applied prior to the start of temperature measurements as a possibility. The
effective sea surface temperature anomaly, (A,y), is defined in Reference 2.
Applying Equation (2) to the sunspot numbers from Figure 2 of
Reference 1 produces the trend shown in Figure 3 next below. Available measured
average global temperatures from Figure 2 in Reference 3 are superimposed on the calculated
values.
Figure 3 shows that temperature anomalies calculated using
Equation (2) estimate possible trends since 1610 and actual trends of reported
temperatures since they have been accurately measured world wide. The match
from 1895 on has R^{2} = 0.9049 which means that 90.49% of average
global temperature anomaly measurements are explained. All factors not
explicitly considered must find room in that unexplained 9.51%. Note that a
coefficient of determination, R^{2} = 0.9049 means a correlation
coefficient of 0.95.
A survey^{ 12} of nontreering global temperature
estimates was conducted by Loehle including some for a period after 1610. A
simplification of the 95% limits found by Loehle are also shown on Figure 3.
The spread between the upper and lower 95% limits are fixed, but, since the
anomaly reference temperatures might be different, the limits are adjusted
vertically to approximately bracket the values calculated using the equations.
The fit appears reasonable considering the uncertainty in all values.
Calculated anomalies look reasonable back to 1700 but indicate higher temps
prior to that than most proxy estimates. They are, however, consistent with the
low sunspot numbers in that period. They
qualitatively agree with Vostok, Antarctica ice core data but decidedly differ
from Sargasso Sea estimates during that time (see the graph for the last 1000
years in Reference 6). Credible worldwide assessments of average global
temperature that far back are sparse. Ocean oscillations might also have been
different from assumed.
Possible lower values
for average sunspot number
Possible lower assumed values for average sunspot number, with
coefficients adjusted to maximize R^{2}, result in noticeably lower
estimates of early (prior to direct measurement) temperatures with only a tiny
decrease in R^{2}. Calculated anomalies resulting from using an average
sunspot number value of 26 are shown in Figure 4. The projected anomaly trend
decline is slightly less steep (0.018 K warmer in 2020) than was shown in
Figure 1.
Figure 4: Calculated
anomalies from the sunspot number timeintegral plus ocean oscillation using 26
as the average sunspot number with superimposed available measured data from
Reference 3 and range estimates determined by Loehle.
Carbon dioxide change
has no significant influence
The influence that CO_{2} has on AGT can be
calculated by including ‘C’ in Equation (1) of Reference 2 as a coefficient to
be determined. The tiny increase in R^{2} demonstrates that
consideration of change to the CO_{2} level has no significant
influence on AGT. The coefficients and resulting R^{2} are given in
Table 1.
Table 1: A, B, C, D,
refer to coefficients in Equation 1 in Reference 2
Average daily SSN

ocean oscillation A

sunspots B

CO_{2} C

Offset
D

Coefficient of determination R^{2}

% cause of
19092005 AGT change


Sunspots

Ocean oscillation

CO_{2 }change


26

0.3416

0.002787

0

0.4746

0.903488

63.8

36.2

0

32

0.3537

0.003265

0

0.4562

0.904779

62.7

37.3

0

34

0.3588

0.003461

0

0.4485

0.904906

62.2

37.8

0

36

0.3642

0.003680

0

0.4395

0.904765

61.7

38.3

0

34

0.3368

0.002898

0.214

0.4393

0.906070

52.3

35.6

12.1

Conclusions
Others that have looked at only amplitude or only duration factors for solar cycles got poor correlations with average global temperature.
The good correlation comes by combining the two, which is what the
timeintegral of sunspot numbers does. As shown in Figure 2, the anomaly trend
determined using the sunspot number timeintegral has experienced substantial
change over the recorded period. Prediction of future sunspot numbers more than
a decade or so into the future has not yet been confidently done although
assessments using planetary synodic periods appear to be relevant^{ 7,8}.
As displayed in Figure 2, the timeintegral of sunspot
numbers alone appears to show the estimated true average global temperature
trend (the net average global energy trend) during the planet warm up from the
depths of the Little Ice Age.
The net effect of ocean oscillations is to cause the surface
temperature trend to oscillate above and below the trend calculated using only
the sunspot number timeintegral. Equation (2) accounts for both and also,
because it matches measurements so well, shows that rational change to the level
of atmospheric carbon dioxide can have no significant influence.
Long term prediction of average global temperatures depends
primarily on long term prediction of sunspot numbers.
References:
11. Graphical
sunspot number prediction for the remainder of solar cycle 24 http://solarscience.msfc.nasa.gov/predict.shtml
12. http://www.econ.ohiostate.edu/jhm/AGW/Loehle/Loehle_McC_E&E_2008.pdf
13. Svensmark paper, Phys. Rev. Lett. 85, 5004–5007 (2000) http://prl.aps.org/abstract/PRL/v85/i23/p5004_1
14. Marsden &
Lingenfelter 2003, Journal of the
Atmospheric Sciences 60: 626636 http://www.co2science.org/articles/V6/N16/C1.php
15. CLOUD experiment at CERN http://indico.cern.ch/event/197799/session/9/contribution/42/material/slides/0.pdf
13. Svensmark paper, Phys. Rev. Lett. 85, 5004–5007 (2000) http://prl.aps.org/abstract/PRL/v85/i23/p5004_1
15. CLOUD experiment at CERN http://indico.cern.ch/event/197799/session/9/contribution/42/material/slides/0.pdf
Your Reference 10 note is unhelpful to one without context. I suggest a link. And while I came to this article via a comment thread, the idea of it lying fallow without added commentary and updates seems a waste. Do you have a Disqus link to add ?
ReplyDeleteThe Reference list with links is at the end of the article.
ReplyDeleteI am unfamiliar with 'Disqus link'. Please clue me in through email link accessed through 'View my complete profile' in upper right corner of article. The email link is displayed on the left side just below where my picture isn't. Thanks.
Thanks Dan!
ReplyDeleteThis is the kind of information that we all need to read. I am totally frustrated with the Global Warming religion and their zealotry... I have resorted to cynicism on all my blogs. Thanks for your post! Keep up the good work!
Thanks for the comments.
DeleteThe warmers lose cred as the CO2 continues to go up and average global temperature doesn't.
1816? The year without a summer? Man, that must have sucked.
ReplyDeleteA lot of folks died.
ReplyDeleteCertainly a detailed piece. I just cannot bring myself to believe in manmade global warming. Wrote a satirical post some time back you might enjoy Paleo Indians and Global Warming. Almost forgot, thanks for your recent visit to one of my blogs (Right Wing Humor)>
DeleteI have only started reading this after reading your comment on WUWT so I haven't much to add except a little criticism about the axis titles. I guess for blogs the units should be (%deg;C) or divide by K (and not K degrees as you have in one graph). I know its difficult to choose the right option for the common reader but mixing things up is not a good idea.
ReplyDeleteThe recommended symbol for degrees Kelvin is K with no degree symbol. Since a Celcius degree is the same size as a Kelvin degree that could have been used but requires also the degree sign. Practice in science work is to use K for either the temperature or the temperature difference which is what anomalies are. All of the graphs have the ordinate (anomaly) in degrees Kelvin using the symbol K. I added 'degrees' on the first graph in case someone might think that the K stood for 1000.
ReplyDeleteDan  your method produces results very similar to mine which is based simply on the working hypothesis that the recent peak in temperatures is a result of a synchronous peak in the 60 year and 1000 year quasi periodicities in the temperature data and the use of the neutron count (and 10Be) as the most useful proxy for solar activity over the long term. For several posts on this subject and for forecasts of the timing and amount of the coming cooling see
ReplyDeletehttp://climatesensenorpag.blogspot.com
Here are the conclusions of the last post on the link
"In earlier posts on this site http://climatesensenorpag.blogspot.com at 4/02/13 and 1/22/13
I have combined the PDO, ,Millennial cycle and neutron trends to estimate the timing and extent of the coming cooling in both the Northern Hemisphere and Globally.
Here are the conclusions of those posts.
1/22/13 (NH)
1) The millennial peak is sharp  perhaps 18 years +/. We have now had 16 years since 1997 with no net warming  and so might expect a sharp drop in a year or two  2014/16 with a net cooling by 2035 of about 0.35.Within that time frame however there could well be some exceptional years with NH temperatures +/ 0.25 degrees colder than that.
2) The cooling gradient might be fairly steep down to the Oort minimum equivalent which would occur about 2100. (about 1100 on Fig 5) ( Fig 3 here) with a total cooling in 2100 from the present estimated at about 1.2 +/
3) From 2100 on through the Wolf and Sporer minima equivalents with intervening highs to the Maunder Minimum equivalent which could occur from about 2600  2700 a further net cooling of about 0.7 degrees could occur for a total drop of 1.9 +/ degrees
4)The time frame for the significant cooling in 2014  16 is strengthened by recent developments already seen in solar activity. With a time lag of about 12 years between the solar driver proxy and climate we should see the effects of the sharp drop in the Ap Index which took place in 2004/5 in 201617.
4/02/13 ( Global)
1 Significant temperature drop at about 201617
2 Possible unusual cold snap 202122
3 Built in cooling trend until at least 2024
4 Temperature Hadsst3 moving average anomaly 2035  0.15
5 Temperature Hadsst3 moving average anomaly 2100  0.5
6 General Conclusion  by 2100 all the 20th century temperature rise will have been reversed,
7 By 2650 earth could possibly be back to the depths of the little ice age.
8 The effect of increasing CO2 emissions will be minor but beneficial  they may slightly ameliorate the forecast cooling and help maintain crop yields .
9 Warning !! There are some signs in the Livingston and Penn Solar data that a sudden drop to the Maunder Minimum Little Ice Age temperatures could be imminent  with a much more rapid and economically disruptive cooling than that forecast above which may turn out to be a best case scenario.
How confident should one be in these above predictions? The pattern method doesn't lend itself easily to statistical measures. However statistical calculations only provide an apparent rigor for the uninitiated and in relation to the IPCC climate models are entirely misleading because they make no allowance for the structural uncertainties in the model set up.This is where scientific judgment comes in  some people are better at pattern recognition and meaningful correlation than others. A past record of successful forecasting such as indicated above is a useful but not infallible measure. In this case I am reasonably sure  say 65/35 for about 20 years ahead. Beyond that certainty drops rapidly. I am sure, however, that it will prove closer to reality than anything put out by the IPCC, Met Office or the NASA group. In any case this is a Bayesian type forecast in that it can easily be amended on an ongoing basis as the Temperature and Solar data accumulate. If there is not a 0.15  0.20. drop in Global SSTs by 2018 20 I would need to reevaluate.
Dr. Page,
ReplyDeleteMy assessment is an extrapolation of the past. I demonstrated that CO2 change had no significant effect in a paper made public in 2008 at http://www.middlebury.net/oped/pangburn.html. The determination of the two climate drivers appears solid. Prediction beyond 2037 depends on prediction of sunspot numbers and ocean oscillations, neither of which have been confidently predicted very far into the future.
I don't like long moving averages because they tend to obscure trend peaks. Long moving averages can be misleading, particularly in noisy data.
Although we both predict future declines, it looks like my decline prediction for 2035 is about twice what you came up with. I haven't looked beyond 2037 but suspect sunspots may be related to planetary synodic periods and ocean oscillations may be influenced by some beat frequency with the lunar cycles.
I believe that futurecast must also work as hindcast and simple is better than complex. Predictions must be physics based.
I agree that what the IPCC is doing has little to do with climate.